Interfacial Photo-Cross-Linking: Simple but Powerful Approach for Fabricating Capsule Polymer Particles with Tunable pH-Responsive Controlled Release Capability.
Yukiya KitayamaAtsushi HaradaPublished in: ACS applied materials & interfaces (2021)
Herein, we describe capsule polymer particles with precisely controlled pH-responsive release properties prepared directly via the interfacial photo-cross-linking of spherical poly(2-diethylaminoethyl methacrylate-co-2-cinnamoylethyl methacrylate) (P(DEAEMA-CEMA)) particles. In the interfacial photo-cross-linking, photoreactive cinnamoyl groups in the polymer particles were cross-linked via [2π + 2π] cycloaddition reactions at the polymer/water interface, showing that the shell-cross-linked hollow polymer particles can be directly prepared from spherical polymer particles. The approach has fascinating advantages such as using minimal components, simplicity, and not requiring sacrificial template particles and toxic solvents. The following important observations are made: (I) encapsulated materials were stably retained in the capsule particles under neutral pH conditions; (II) encapsulated materials were released from the capsule particles under acidic pH conditions; (III) the release kinetics of encapsulated materials were controlled by the pH conditions; i.e., immediate and sustained release was achieved by varying the acidity of the aqueous media; (IV) the photoirradiation time did not significantly affect the release kinetics under different pH conditions; and (V) the pH-responsive release properties were regulated by changing the polymer composition in P(DEAEMA-CEMA). Furthermore, by exploiting the pH-responsiveness, capsule particles are successfully obtained via an all-aqueous process from spherical polymer particles. The advantages of the all-aqueous encapsulation process allowed the water-soluble biomacromolecules such as DNA and saccharides to be successfully encapsulated in the P(DEAEMA-CEMA) hollow particles. With this simple interfacial photo-cross-linking strategy, we envision the ready synthesis of sophisticated particulate materials for broad application in advanced research fields.