Characterization of a thermostable Deconica castanella Laccase and application toward pentachlorophenol degradation.
Glauciane Danusa CoelhoNara BallaminutDouglas Vieira ThomazKátia Maria Gomes MachadoPublished in: Preparative biochemistry & biotechnology (2019)
Pentachlorophenol (PCP) is an organochlorine pesticide whose toxicity led it to be banned in several countries. In Brazil however, this compound is widely accessible, and its indiscriminate use leads to extensive soil contamination, which requires henceforth, the development of new approaches to manage PCP presence in environment. Considering that PCP is susceptible to undergo enzymatic degradation, this investigation is thence, aimed at the purification, and characterization, of a thermostable fungal enzyme (i.e. Laccase of Deconica castanella (Dc-Lac), and assess its role in PCP in vitro biodegradation. Results evidenced that, molecular mass of the partially purified Dc-Lac was estimated to be of 64 kDa, presenting apparent Km of 0.47 µmol, and Vmax of 11.56 U mg-1. The optimum temperature and pH were 55 °C and 2.5, respectively. The T½ verified at 55, 60, and 80 °C were 19 and 17 hr, and 47 min, respectively. The highest PCP biodegradation was of 23% at pollutant concentration of 100 µg L-1, which evidenced that Dc-Lac is a thermostable enzyme that acted directly in PCP degradation and may be a useful asset to remediate this pollutant.