Login / Signup

High-density neural recordings from feline sacral dorsal root ganglia with thin-film array.

Zachariah J SperryKyounghwan NaJames JunLauren R MaddenAlec SochaEuisik YoonJohn P SeymourTim M Bruns
Published in: Journal of neural engineering (2021)
Objective. Dorsal root ganglia (DRG) are promising sites for recording sensory activity. Current technologies for DRG recording are stiff and typically do not have sufficient site density for high-fidelity neural data techniques.Approach. In acute experiments, we demonstrate single-unit neural recordings in sacral DRG of anesthetized felines using a 4.5µm thick, high-density flexible polyimide microelectrode array with 60 sites and 30-40µm site spacing. We delivered arrays into DRG with ultrananocrystalline diamond shuttles designed for high stiffness affording a smaller footprint. We recorded neural activity during sensory activation, including cutaneous brushing and bladder filling, as well as during electrical stimulation of the pudendal nerve and anal sphincter. We used specialized neural signal analysis software to sort densely packed neural signals.Main results. We successfully delivered arrays in five of six experiments and recorded single-unit sensory activity in four experiments. The median neural signal amplitude was 55μV peak-to-peak and the maximum unique units recorded at one array position was 260, with 157 driven by sensory or electrical stimulation. In one experiment, we used the neural analysis software to track eight sorted single units as the array was retracted ∼500μm.Significance. This study is the first demonstration of ultrathin, flexible, high-density electronics delivered into DRG, with capabilities for recording and tracking sensory information that are a significant improvement over conventional DRG interfaces.
Keyphrases
  • high density
  • spinal cord injury
  • data analysis
  • neuropathic pain
  • deep brain stimulation
  • deep learning
  • mechanical ventilation
  • acute respiratory distress syndrome