Optoelectronics and defect levels in hydroxyapatite by first-principles.
Leon A AvakyanEkaterina V ParamonovaJosé CoutinhoSven ÖbergVladimir S BystrovLusegen A BugaevPublished in: The Journal of chemical physics (2018)
Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.
Keyphrases
- density functional theory
- molecular dynamics
- solar cells
- electron transfer
- monte carlo
- high resolution
- tissue engineering
- ionic liquid
- molecular docking
- soft tissue
- gold nanoparticles
- combination therapy
- gas chromatography mass spectrometry
- smoking cessation
- bone regeneration
- mass spectrometry
- gas chromatography
- liquid chromatography
- electron microscopy
- energy transfer