Login / Signup

Application of Plant Growth-Promoting Bacteria from Cape Verde to Increase Maize Tolerance to Salinity.

Catarina CruzPaulo CardosoJacinta SantosDiana MatosCarina SáEtelvina Figuera
Published in: Antioxidants (Basel, Switzerland) (2023)
Salinity constitutes a major abiotic factor that negatively affects crop productivity. Inoculation with plant growth-promoting bacteria (PGPB) is proven to increase plant tolerance to abiotic stresses and enhance plant growth, development and productivity. The present study aims to increase the resilience of crops to salinity using bacteria from the microbiome of plants growing in saline environments. For that, the halotolerance of bacteria present in the roots of natural plants growing on Sal Island, which is characterized by its arid environment and maritime influence, was determined, with some strains having extreme halotolerance. Their ability to produce plant growth-promoting traits was evaluated, with most strains increasing indole acetic acid (26-418%), siderophore (>300%) and alginate (2-66%) production and phosphate solubilization (13-100%) under salt stress. The strains evidencing the best performance were inoculated in maize ( Zea mays L.) plants and their influence on plant growth and biochemical status was evaluated. Results evidenced bacterial ability to especially increase proline (55-191%), whose osmotic, antioxidant and protein-protecting properties reduced protein damage in salt-stressed maize plants, evidencing the potential of PGPB to reduce the impact of salinity on crops. Enhanced nutrition, phytohormone production and osmolyte synthesis along with antioxidant response all contribute to increasing plant tolerance to salt stress.
Keyphrases
  • plant growth
  • climate change
  • microbial community
  • escherichia coli
  • oxidative stress
  • south africa
  • physical activity
  • protein protein
  • binding protein
  • stress induced
  • depressive symptoms
  • arabidopsis thaliana