Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether.
Wei ZhouJincan KangKang ChengShun HeJiaqing ShiCheng ZhouQinghong ZhangJunchao ChenLuming PengMingshu ChenYe WangPublished in: Angewandte Chemie (International ed. in English) (2018)
Selective conversion of syngas (CO/H2 ) into C2+ oxygenates is a highly attractive but challenging target. Herein, we report the direct conversion of syngas into methyl acetate (MA) by relay catalysis. MA can be formed at a lower temperature (ca. 473 K) using Cu-Zn-Al oxide/H-ZSM-5 and zeolite mordenite (H-MOR) catalysts separated by quartz wool (denoted as Cu-Zn-Al/H-ZSM-5|H-MOR) and also at higher temperatures (603-643 K) without significant deactivation using spinel-structured ZnAl2 O4 |H-MOR. The selectivity of MA and acetic acid (AA) reaches 87 % at a CO conversion of 11 % at 643 K. Dimethyl ether (DME) is the key intermediate and the carbonylation of DME results in MA with high selectivity. We found that the relay catalysis using ZnAl2 O4 |H-MOR|ZnAl2 O4 gives ethanol as the major product, while ethylene is formed with a layer-by-layer ZnAl2 O4 |H-MOR|ZnAl2 O4 |H-MOR combination. Close proximity between ZnAl2 O4 and H-MOR increases ethylene selectivity to 65 %.