New Insights into Black Carbon Nanoparticle-Induced Dispersibility of Goethite Colloids and Configuration-Dependent Sorption for Phenanthrene.
Fei LianWenchao YuZhenyu WangBaoshan XingPublished in: Environmental science & technology (2018)
Black carbon nanoparticles (nano-BC) are one of the most active components in pyrogenic carbonaceous matter and involved in many biogeochemical processes. This study investigated heteroaggregation of nano-BC with goethite (a model of natural mineral colloids) and the configuration effect of heteroaggregates on phenanthrene (PHE) sorption. Nano-BC could significantly enhance the dispersion of goethite via heteroaggregation when its concentration was higher than the critical concentration ( Cc). The Cc was dependent on the surface potential of nano-BC, which was directly measured for the first time in this study. Configuration and stability of the heteroaggregates were regulated by BC-goethite mass ratio and solution pH. At pH 5.3, oppositely charged goethite and nano-BC interacted with each other through electrostatic attraction and the configuration of heteroaggregates was dependent on BC-goethite mass ratio. At pH 7.4, where both goethite and nano-BC were negatively charged, they heteroaggregated with each other mainly through H-bonding and Lewis acid-base mechanisms, and the configuration of heteroaggregates was independent of BC-goethite mass ratio. For PHE sorption, small-sized heteroaggregates were more favorable than large ones due to the higher content of active sorption sites. Interestingly, at a higher concentration of PHE, we found that the solute molecules could probably penetrate into and/or alter the configuration of heteroaggregates and enhance its sorption capacity for PHE. These findings are useful for understanding the effect of nano-BC on colloidal stability and organic compound sorption of minerals.