Login / Signup

Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages.

Vânia I B CastroAna R AraújoFilipa DuarteAntónio Sousa-FrancoRui L ReisIva PashkulevaRicardo A Pires
Published in: ACS applied materials & interfaces (2023)
We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heating-cooling cycle) or solvent (DMSO to water) switch. The sol-gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties. Human adipose derived stem cells (hASCs) cultured on these gels under basal conditions (i.e., without differentiation factors) overexpressed neural markers, such as GFAP, Nestin, MAP2, and βIII-tubulin, confirming the differentiation into neural lineages. The mechanical properties of the gels influenced the number and distribution of the adhered cells. A comparison with gels obtained from the nonglycosylated peptide showed that glycosylation is crucial for the biofunctionality of the hydrogels by capturing and preserving essential growth factors, e.g., FGF-2.
Keyphrases
  • wound healing
  • stem cells
  • hyaluronic acid
  • drug delivery
  • endothelial cells
  • extracellular matrix
  • drug release
  • induced apoptosis
  • tissue engineering
  • insulin resistance
  • type diabetes
  • cell death
  • mesenchymal stem cells