Implementation of a passive bi-articular ankle-knee exoskeleton during maximal squat jumping.
Logan WadeGlen A LichtwarkDominic James FarrisPublished in: Royal Society open science (2024)
Owing to the unexplored potential to harness knee extension power during jumping, the current study aimed to examine how joint mechanics were altered with a biologically inspired, passive bi-articular ankle-knee exoskeleton, which could potentially facilitate greater jump height by increasing work production about the knee and ankle. Twenty-five participants (16 males and 9 females, 175.2 ± 8.2 cm, 72.9 ± 10.3 kg, 24.0 ± 3.4 years) performed maximal squat jumping with and without the exoskeletal device and we compared jump height, joint moment and joint work of the lower limbs. Despite a low exoskeleton stiffness and therefore a limited capacity to store energy, the bi-articular device resulted in decreased jump height (1.9 ± 3.1 cm, p = 0.006), decreased net work about the knee (0.23 J/kg, p < 0.001) and no increase in ankle joint work ( p = 0.207), compared with jumping with no exoskeleton. Based on our findings, to mimic unassisted ankle joint moment profiles, a future bi-articular device would need increased elastic element slack length, greater stiffness and a larger moment arm about the ankle. Future designs could also employ attachment sites that have minimal overlying soft tissue, such as the pelvis, to improve comfort of the device.