Login / Signup

Thiolumazines as Heavy-Atom-Free Photosensitizers for Applications in Daylight Photodynamic Therapy: Insights from Ultrafast Excited-State Dynamics.

Subhrakant JenaKiran Devi TulsiyanAnupa KumariRitwick DasHimansu S Biswal
Published in: The journal of physical chemistry. B (2022)
Finding appropriate photosensitizers (PSs) for daylight photodynamic therapy (dPDT) applications is extremely challenging, even though heavy-atom-free photosensitizers (HAFPSs) such as thiocarbonyl-modified nucleobases have shown a ray of hope. Few attempts have been made to find alternative natural products for dPDT applications. Pteridine heterocycles consisting of a pyrazine ring and a pyrimidine ring, such as lumazine, which exhibit many structural similarities to the alloxazine ring of the flavin molecule, could be an option for HAFPSs. The photophysical and quantum mechanical studies of the thio-modified lumazines revealed that sequential thiomodifications in lumazine result in a bathochromic shift. Additionally, higher tissue penetration depths were observed for thiolumazines. The fluorescence quenching in the case of thiomodified lumazines was explained using triplet state formation, whereas the contribution from the photoinduced electron transfer process cannot be ignored. It was also noticed that a strong one-photon absorption influenced the two-photon absorption (TPA) process, leading to a self-focusing effect in the visible spectral region. The higher tissue penetration and larger TPA cross section are the hallmark characteristics of the thiolumazines to be considered as potential HAFPSs for dPDT applications.
Keyphrases