Vascular endothelial growth factor from retinal pigment epithelium is essential in choriocapillaris and axial length maintenance.
Yan ZhangHeonuk JeongKiwako MoriShin-Ichi IkedaChiho ShodaYukihiro MiwaAyaka NakaiJunhan ChenZiyan MaXiaoyan JiangHidemasa ToriiYoshiaki KubotaKazuno NegishiToshihide KuriharaMasayuki OhtaPublished in: PNAS nexus (2022)
Myopia, which prevalence is rapidly increasing, causes visual impairment; however, the onset mechanism of pathological axial length (AL) elongation remains unclear. A highly vascularized choroid between the retinal pigment epithelium (RPE) and sclera not only maintains physiological activities, but also contributes to ocular development and growth regulation. Vascular endothelial growth factor (VEGF) secreted from the RPE to the choroid is essential for retinal function and maintenance of the choriocapillaris. Herein, we demonstrated that the loss of VEGF secreted from the RPE caused abnormal choriocapillaris development and AL elongation, with features similar to those of the lens-induced myopia (LIM) mouse model, whereas VEGF overexpression by knocking-out von Hippel-Lindau (VHL) specific to the RPE expands the choriocapillaris and shortens the AL. Additionally, LDL Receptor Related Protein 2 (LRP2) deletion in the RPE downregulated VEGF expression and leads to pathological AL elongation. Furthermore, high-myopia patients without choriocapillaris demonstrated longer ALs than did those with preserved choriocapillaris. These results suggest that physiological secretion of VEGF from the RPE is required for proper AL development by maintaining the choriocapillaris. The pinpoint application of VEGF to the choriocapillaris may become a potential intervention for the prevention and treatment of axial myopia progression.
Keyphrases
- vascular endothelial growth factor
- endothelial cells
- optic nerve
- mouse model
- end stage renal disease
- high glucose
- optical coherence tomography
- risk factors
- chronic kidney disease
- oxidative stress
- cell proliferation
- prognostic factors
- transcription factor
- peritoneal dialysis
- binding protein
- climate change
- replacement therapy
- smoking cessation