Previous studies showed that cupric oxide (CuO) can enhance the formation of trihalomethanes (THMs), haloacetic acids, and bromate during chlorination of bromide-containing waters. In this study, the impact of CuO on the formation kinetics and mechanisms of halogenated disinfection byproducts (DBPs) during chlorination was investigated. CuO does not enhance the formation of DBPs (i.e., 1,1,1-trichloropropanone, chloroform, and trichloroacetaldehyde (TCAL) /dichloroacetonitrile) during chlorination of acetone, 3-oxopentanedioic acid (3-OPA), and aspartic acid, respectively. This indicates that the halogen substitution pathway cannot be enhanced by CuO. Instead, CuO (0.1 g L -1 ) accelerates the second-order rate constants for reactions of chlorine (HOCl) with TCAL, citric acid, and oxalic acid at pH 8.0 and 21 °C from <0.1 to 29.4, 7.2, and 15.8 M -1 s -1 , respectively. Oxidation pathway predominates based on the quantification of oxidation products (e.g., a trichloroacetic acid yield of ∼100% from TCAL) and kinetic modeling. CuO can enhance the formation of DBPs (e.g., THMs, haloacetaldehydes, and haloacetonitriles) during chlorination of model compounds and dissolved organic matter, of which both halogen substitution and oxidation pathways are required. Reaction rate constants of rate-limiting steps (e.g., citric acid to 3-OPA, aromatic ring cleavage) could be enhanced by CuO via an oxidation pathway since CuO-HOCl complex is more oxidative toward a range of substrates than HOCl in water. These findings provide novel insights into the DBP formation pathway in copper-containing distribution systems.