Login / Signup

Low-Complexity Filter for Software-Defined Radio by Modulated Interpolated Coefficient Decimated Filter in a Hybrid Farrow.

Temidayo O OtunniyiHermanus Carel Myburgh
Published in: Sensors (Basel, Switzerland) (2022)
Realising a low-complexity Farrow channelisation algorithm for multi-standard receivers in software-defined radio is a challenging task. A Farrow filter operates best at low frequencies while its performance degrades towards the Nyquist region. This makes wideband channelisation in software-defined radio a challenging task with high computational complexity. In this paper, a hybrid Farrow algorithm that combines a modulated Farrow filter with a frequency response interpolated coefficient decimated masking filter is proposed for the design of a novel filter with low computational complexity. A design example shows that the HFarrow filter bank achieved multiplier reduction of 50%, 70% and 64%, respectively, in comparison with non-uniform modulated discrete Fourier transform (NU MDFT FB), coefficient decimated filter bank (CD FB) and interpolated coefficient decimated (ICDM) filter algorithms. The HFarrow filter bank is able to provide the same number of sub-band channels as other algorithms such as non-uniform modulated discrete Fourier transform (NU MDFT FB), coefficient decimated filter bank (CD FB) and interpolated coefficient decimated (ICDM) filter algorithms, but with less computational complexity.
Keyphrases
  • machine learning
  • diffusion weighted imaging
  • magnetic resonance
  • computed tomography
  • nk cells