Establishment and Validation of CyberKnife Irradiation in a Syngeneic Glioblastoma Mouse Model.
Claudius JelgersmaCarolin SengerAnne Kathrin KlugeAnastasia JanasMelina Nieminen-KelhäIrina KremenetskaiaSusanne MüllerSusan BrandenburgFranziska LoebelIngeborg TinhoferAlfredo ContiVolker BudachPeter VajkoczyGueliz AckerPublished in: Cancers (2021)
CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches.
Keyphrases
- mouse model
- contrast enhanced
- computed tomography
- protein kinase
- immune response
- cell proliferation
- magnetic resonance imaging
- dual energy
- radiation induced
- positron emission tomography
- cell cycle
- metabolic syndrome
- signaling pathway
- inflammatory response
- dendritic cells
- molecular dynamics
- pi k akt
- optic nerve
- insulin resistance
- density functional theory
- circulating tumor cells