Ex vivo assessment and in vivo validation of non-invasive stent monitoring techniques based on microwave spectrometry.
Carolina Gálvez-MontónGianluca Arauz-GarofaloOriol Rodriguez-LeorCarolina Soler-BotijaSusana Amorós García de ValdecasasFlavio David Gerez-BritosAntoni Bayes-GenisJuan Manuel O'CallaghanFerran MaciàJavier TejadaPublished in: Scientific reports (2018)
Some conditions are well known to be directly associated with stent failure, including in-stent re-occlusion and stent fracture. Currently, identification of these high-risk conditions requires invasive and complex procedures. This study aims to assess microwave spectrometry (MWS) for monitoring stents non-invasively. Preliminary ex vivo data are presented to move to in vivo validation. Fifteen mice were assigned to receive subcutaneous stent implantations (n = 10) or sham operations (n = 5). MWS measurements were carried out at 0, 2, 4, 7, 14, 22, and 29 days of follow-up. Additionally, 5 stented animals were summited to micro-CT analyses at the same time points. At 29 days, 3 animals were included into a stent fracture subgroup and underwent a last MWS and micro-CT analysis. MWS was able to identify stent position and in-stent stenosis over time, also discerning significant differences from baseline measures (P < 0.001). Moreover, MWS identified fractured vs. non-fractured stents in vivo. Taken together, MWS emerges as a non-invasive, non-ionizing alternative for stent monitoring. MWS analysis clearly distinguished between in-stent stenosis and stent fracture phenomena.