Ternary Organic Solar Cells by Small Amount of Efficient Light Absorption Polymer PSEHTT as Third Component Materials.
Han ZhangSongrui JiaZhiyong LiuZheng ChenPublished in: Molecules (Basel, Switzerland) (2023)
We prepared ternary organic solar cells (OSCs) by incorporating the medium wavelength absorption polymer PSEHTT into the PM6:L8-BO binary system. The power conversion efficiency (PCE) is improved from 15.83% to 16.66%. Although the fill factor (FF) is slightly reduced, the short-circuit current density ( J SC ) and open-circuit voltage ( V OC ) are significantly increased at the same time. A small amount of PSEHTT has a broad absorption spectrum in the short wavelength region and has good compatibility with PM6, which is conducive to fine-tuning the photon collection and improving the J SC . In addition, the highest occupied molecular orbital (HOMO) energy level of PSEHTT is deeper than that of PM6, which broadens the optical bandgap. This study provides an effective method to fabricate high-performance ternary OSCs by using a lower concentration of PSEHTT with PM6 as a hybrid donor material, which ensures a better surface and bulk morphology, improves photon collection, and broadens the optical bandgap.