Surfactant-Free Aqueous Synthesis of Novel Ba2GdF7:Yb3+, Er3+@PEG Upconversion Nanoparticles for in Vivo Trimodality Imaging.
Yang FengHongda ChenLina MaBaiqi ShaoShuang ZhaoZhenxin WangHongpeng YouPublished in: ACS applied materials & interfaces (2017)
In this work, we developed the surfactant-free aqueous synthesis of novel polyethylene glycol (PEG) coated Ba2GdF7:Yb3+, Er3+ upconversion nanoparticles (named as, Ba2GdF7:Yb3+, Er3+@PEG UCNPs) for in vivo multimodality imaging including upconversion luminescence (UCL), X-ray computed tomography (CT), and T1-weighted magnetic resonance (MR). The as-prepared Ba2GdF7:Yb3+, Er3+@PEG UCNPs not only present bright UCL and reasonably high CT/MR enhancements but also exhibit excellent colloidal stability, inappreciable cytotoxicity, and negligible organ toxicity. In particular, the Ba2GdF7:Yb3+, Er3+@PEG UCNPs emit red UCL with high intensity in the tumor site after intravenous injection via the tail vein of a nude mouse. The Ba2GdF7:Yb3+, Er3+@PEG UCNPs as contrast agents exhibit high-performance for in vivo trimodality (UCL/CT/MR) imaging of a tumor during HepG2 tumor-bearing nude mouse experiments.
Keyphrases
- contrast enhanced
- energy transfer
- magnetic resonance
- computed tomography
- dual energy
- magnetic resonance imaging
- drug delivery
- endoplasmic reticulum
- estrogen receptor
- high intensity
- breast cancer cells
- high resolution
- quantum dots
- photodynamic therapy
- image quality
- positron emission tomography
- ionic liquid
- oxidative stress
- fluorescence imaging
- pet ct