Login / Signup

Lab-on-a-Contact Lens Platforms Fabricated by Multi-Axis Femtosecond Laser Ablation.

Rosalia MoredduVahid NasrollahiPanagiotis KassanosStefan DimovDaniele VigoloAli K Yetisen
Published in: Small (Weinheim an der Bergstrasse, Germany) (2021)
Contact lens sensing platforms have drawn interest in the last decade for the possibility of providing a sterile, fully integrated ocular screening technology. However, designing scalable and rapid contact lens processing methods while keeping a high resolution is still an unsolved challenge. In this article, femtosecond laser writing is employed as a rapid and precise procedure to engrave microfluidic networks into commercial contact lenses. Functional microfluidic components such as flow valves, resistors, multi-inlet geometries, and splitters are produced using a bespoke seven-axis femtosecond laser system, yielding a resolution of 80 µm. The ablation process and the tear flow within microfluidic structures is evaluated both experimentally and computationally using finite element modeling. Flow velocity drops of the 8.3%, 20.8%, and 29% were observed in valves with enlargements of the 100%, 200%, and 300%, respectively. Resistors yielded flow rate drops of 20.8%, 33%, and 50% in the small, medium, and large configurations, respectively. Two applications were introduced, namely a tear volume sensor and a tear uric acid sensor (sensitivity 16 mg L-1 ), which are both painless alternatives to current methods and provide reduced contamination risks of tear samples.
Keyphrases