Login / Signup

Novel Chlorinated Polyfluorinated Ether Sulfonates and Legacy Per-/Polyfluoroalkyl Substances: Placental Transfer and Relationship with Serum Albumin and Glomerular Filtration Rate.

Yitao PanYingshuang ZhuTongzhang ZhengQianqian CuiStephen L BukaBin ZhangYong GuoWei XiaLeo W Y YeungYuanyuan LiAifen ZhouLin QiuHongxiu LiuMinmin JiangChuansha WuShunqing XuJiayin Dai
Published in: Environmental science & technology (2016)
Per- and polyfluoroalkyl substances (PFASs) may cross the placental barrier and lead to fetal exposure. However, little is known about the factors that influence maternal-fetal transfer of these chemicals. PFAS concentrations were analyzed in 100 paired samples of human maternal sera collected in each trimester and cord sera at delivery; these samples were collected in Wuhan, China, 2014. Linear regression was used to estimate associations of transfer efficiencies with factors. Chlorinated polyfluorinated ether sulfonates (Cl-PFAESs, 6:2 and 8:2) were frequently detected (>99%) in maternal and cord sera. A significant decline in PFAS levels during the three trimesters was observed. A U-shape trend for transfer efficiency with increasing chain length was observed for both carboxylates and sulfonates. Higher transfer efficiencies of PFASs were associated with advancing maternal age, higher education, and lower glomerular filtration rate (GFR). Cord serum albumin was a positive factors for higher transfer efficiency (increased 1.1-4.1% per 1g/L albumin), whereas maternal serum albumin tended to reduce transfer efficiency (decreased 2.4-4.3% per 1g/L albumin). Our results suggest that exposure to Cl-PFAESs may be widespread in China. The transfer efficiencies among different PFASs were structure-dependent. Physiological factors (e.g., GFR and serum albumin) were observed for the first time to play critical roles in PFAS placental transfer.
Keyphrases
  • pregnancy outcomes
  • birth weight
  • healthcare
  • endothelial cells
  • electron transfer
  • physical activity
  • pregnant women
  • ionic liquid
  • drinking water
  • quality improvement
  • high resolution