Login / Signup

Early exhumation of the Frontal Cordillera (Southern Central Andes) and implications for Andean mountain-building at ~33.5°S.

Magali RiesnerMartine SimoesDaniel CarrizoRobin Lacassin
Published in: Scientific reports (2019)
The Andes are the modern active example of a Cordilleran-type orogen, with mountain-building and crustal thickening within the upper plate of a subduction zone. Despite numerous studies of this emblematic mountain range, several primary traits of this orogeny remain unresolved or poorly documented. The onset of uplift and deformation of the Frontal Cordillera basement culmination of the Southern Central Andes is such an example, even though this structural unit appears as a first-order topographic and geological feature. To solve for this, new (U-Th)/He ages on apatite and zircon from granitoids of the Frontal Cordillera at ~33.5°S are provided here. These data, interpreted as an age-elevation thermochronological profile, imply continuous exhumation initiating well before ~12-14 Ma, and at most by ~22 Ma when considering the youngest zircon grain from the lowermost sample. The age of exhumation onset is then refined to ~20 Ma by combining these results with data on sedimentary provenance from the nearby basins. Such continuous exhumation since ~20 Ma needs to have been sustained by tectonic uplift on an underlying crustal-scale thrust ramp. Such early exhumation and associated uplift of the Frontal Cordillera invalidate the classically proposed east-vergent models of the Andes at this latitude. Additionally, they provide further support to recent views on Andean mountain-building proposing that the Andes at ~33.5°S grew firstly over west-vergent basement structures.
Keyphrases
  • functional connectivity
  • working memory
  • electronic health record
  • big data
  • machine learning
  • genome wide
  • high resolution
  • deep learning
  • data analysis
  • gene expression
  • mass spectrometry
  • artificial intelligence