Angiotensin-converting enzyme 2 augments the effects of endothelial progenitor cells-exosomes on vascular smooth muscle cell phenotype transition.
Jinju WangJiao LiChuanfang ChengShiming LiuPublished in: Cell and tissue research (2020)
Phenotype transition of vascular smooth muscle cells (VSMCs) is implicated in vascular diseases. Angiotensin-converting enzyme 2 (ACE2) is a perspective cardiovascular target due to its ability of converting angiotensin (Ang II) to Ang (1-7). Our group recently showed that ACE2 can regulate the function of endothelial progenitor cell-derived exosomes (EPC-EXs). Here, we investigate whether ACE2 could affect the role of EPC-EXs on phenotype transition of VSMCs. After co-incubation with EXs released from EPC overexpressed ACE2 (EPC-EXsACE2), the ACE2 level and Ang II/Ang (1-7), proliferation/migration, phenotype gene, cytokine and NF-κB level on VSMCs were assessed. To determine the EX uptake route, VSMCs were pretreated with inhibitors. We found that (1) EPC-EXs and EPC-EXsACE2 were uptaken by VSMCs dominantly through caveolin-dependent endocytosis. (2) EPC-EXsACE2 remarkably increased the ACE2 level and decreased Ang II/Ang (1-7) in VSMCs activated by Ang II, whereas EPC-EXsACE2 pretreated by proteinase A blocked this effect. (3) EPC-EXsACE2 had better effects than EPC-EXs on reducing proliferation/migration activities and cytokine (MCP-1, TNF-α) secretion of Ang II-activated VSMCs. (4) EPC-EXs attenuated Ang II-induced VSMC synthetic phenotype change as evidenced by upregulated expressions of calponin and a-SMA and downregulated expressions of CRBP-1 and MYH10, associated with a decreased NF-κB level. EPC-EXsACE2 augmented these effects, which were attenuated by ACE2 inhibitor (DX600). In conclusion, EPC-EXsACE2 reduced Ang II-induced VSMC phenotype change by conveying functional ACE2 to downregulate the activated NF-κB pathway.