Login / Signup

Interfacial solvation can explain attraction between like-charged objects in aqueous solution.

Alžbeta KubincováPhilippe H HünenbergerMadhavi Krishnan
Published in: The Journal of chemical physics (2020)
Over the past few decades, the experimental literature has consistently reported observations of attraction between like-charged colloidal particles and macromolecules in aqueous solution. Examples include nucleic acids and colloidal particles in the bulk solution and under confinement, and biological liquid-liquid phase separation. This observation is at odds with the intuitive expectation of an interparticle repulsion that decays monotonically with distance. Although attraction between like-charged particles can be rationalized theoretically in the strong-coupling regime, e.g., in the presence of multivalent counterions, recurring accounts of long-range attraction in aqueous solution containing monovalent ions at low ionic strength have posed an open conundrum. Here, we show that the behavior of molecular water at an interface-traditionally disregarded in the continuum electrostatics picture-provides a mechanism to explain the attraction between like-charged objects in a broad spectrum of experiments. This basic principle will have important ramifications in the ongoing quest to better understand intermolecular interactions in solution.
Keyphrases
  • aqueous solution
  • ionic liquid
  • molecular dynamics simulations
  • molecular dynamics