Nonbonding/Bonding Molecular Orbital Regulation of Nitrogen-Boron-Oxygen-embedded Blue/Green Multiresonant TADF Emitters with High Efficiency and Color Purity.
Guanting LiuHisahiro SasabeKengo KumadaHiroki AraiJunji KidoPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2022)
In this study, we synthesized and characterized multiresonant thermally activated delayed fluorescent (TADF) materials embedded with nitrogen-boron-oxygen (N-B-O), exhibiting color-tunability between blue and green, namely NBO, m-DiNBO, and p-DiNBO. The three emitter materials showed a high photoluminescence quantum yield (PLQY) and a state-of-the-art narrow full width at half maximum (FWHM) of 96 %/25 nm, 87 %/17 nm, and 99 %/19 nm, respectively. For m-DiNBO and p-DiNBO, the emission color could be tuned from blue to green by regulating the nonbonding/bonding molecular orbital characters. Owing to the expanded planar molecular structure, m-DiNBO and p-DiNBO showed high horizontal dipole ratio (Θ) of 88 % and 92 %, respectively. OLEDs were prepared with NBO, m-DiNBO, and p-DiNBO, exhibiting high external quantum efficiencies of 16.8 %, 24.2 %, and 21.6 %, respectively. NBO and m-DiNBO exhibited pure-blue emission with CIE coordinates of (0.137, 0.142) and (0.126, 0.098), respectively. p-DiNBO showed pure-green emission with a CIE coordinate of (0.258, 0.665).