In Situ Liquid Secondary Ion Mass Spectrometry: A Surprisingly Soft Ionization Process for Investigation of Halide Ion Hydration.
Yanyan ZhangWenjuan ZengLiuqin HuangWen LiuEndong JiaYao ZhaoFu-Yi WangZihua ZhuPublished in: Analytical chemistry (2019)
The understanding of ion solvation phenomena is of significance due to their influences on many important chemical, biological, and environmental processes. Mass spectrometry (MS)-based methods have been used to investigate this topic with molecular insights. As ion-solvent interactions are weak, ionization processes should be as soft as possible in order to retain solvation structures. An in situ liquid secondary ion MS (SIMS) approach developed in our group has been recently utilized in investigations of Li ion solvation in nonaqueous solution, and it detected a series of solvated Li ions. As traditionally SIMS has long been recognized as a hard ionization process with strong damage occurring at the sputtering interface, it is very interesting to study further how soft in situ liquid SIMS can be. In this work, we used halide ion hydration as an example to compare the ionization performance of the in situ liquid SIMS approach with regular electrospray ionization MS (ESI-MS). Results show that, although ESI has been recognized as a soft ionization method, nearly no solvated halide ions were detected by ESI-MS analysis, which acquired only strong signals of salt ion clusters. In contrast, in liquid SIMS spectra, a series of obvious hydrated halide ion compositions could be observed. We further evaluated the hydration numbers of halide ions and revealed the effects of the ion size, charge density, and polarizability on the hydration phenomenon. Our findings demonstrated that the in situ liquid SIMS approach is surprisingly soft, and it is expected to have very broad applications on investigation of various ion-solvent interactions and many other interesting chemical processes (e.g., the initial nucleation of nanoparticle formation) in liquid environment.