Login / Signup

Interaction between Angiotensinase Activities in Pituitary and Adrenal Glands of Wistar-Kyoto and Spontaneously Hypertensive Rats under Hypotensive or Hypertensive Treatments.

Ana Belén Segarra RoblesIsabel PrietoInmaculada BanegasMagdalena Martínez-CañameroAna B VillarejoGermán Domínguez-VíasMarc de GasparoManuel Ramírez-Sánchez
Published in: International journal of molecular sciences (2021)
In the present study, we analyzed the activity of several aminopeptidases (angiotensinases) involved in the metabolism of various angiotensin peptides, in pituitary and adrenal glands of untreated Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) or treated with the antihypertensive drugs captopril and propranolol or with the L-Arginine hypertensive analogue L-NG-Nitroarginine Methyl Ester (L-NAME). Intra- and inter-gland correlations between angiotensinase activities were also calculated. Membrane-bound alanyl-, cystinyl-, and glutamyl-aminopeptidase activities were determined fluorometrically using aminoacyl-β-naphthylamide as substrates. Depending on the type of angiotensinase analyzed, the results reflect a complex picture showing substantial differences between glands, strains, and treatments. Alanyl-aminopeptidase responsible for the metabolism of Ang III to Ang IV appears to be the most active angiotensinase in both pituitary and adrenals of WKY and particularly in SHR. Independently of treatment, most positive correlations are observed in the pituitary gland of WKY whereas such positive correlations are predominant in adrenals of SHR. Negative inter-gland correlations were observed in control SHR and L-NAME treated WKY. Positive inter-gland correlations were observed in captopril-treated SHR and propranolol-treated WKY. These results may reflect additional mechanisms for increasing or decreasing systolic blood pressure in WKY or SHR.
Keyphrases
  • blood pressure
  • hypertensive patients
  • angiotensin ii
  • heart rate
  • nitric oxide
  • left ventricular
  • metabolic syndrome
  • skeletal muscle
  • insulin resistance
  • atrial fibrillation
  • amino acid
  • weight loss