Strongly Correlated Ladders in K-Doped p-Terphenyl Crystals.
John SousNatalia A GadjievaColin P NuckollsDavid R ReichmanAndrew J MillisPublished in: Nano letters (2021)
Potassium-doped terphenyl has recently attracted attention as a potential host for high-transition-temperature superconductivity. Here, we elucidate the many-body electronic structure of recently synthesized potassium-doped terphenyl crystals. We show that this system may be understood as a set of weakly coupled one-dimensional ladders. Depending on the strength of the interladder coupling, the system may exhibit insulating spin-gapped valence-bond solid or antiferromagnetic phases, both of which upon hole doping may give rise to superconductivity. This terphenyl-based ladder material serves as a new platform for investigating the fate of ladder phases in the presence of three-dimensional coupling as well as for novel superconductivity.