Login / Signup

Design and Synthesis of Phenyl Sulfide-Based Cationic Amphiphiles as Membrane-Targeting Antimicrobial Agents against Gram-Positive Pathogens.

Wanxin LiangQian YuZixian ZhengJiayong LiuQiongna CaiShouping LiuShuimu Lin
Published in: Journal of medicinal chemistry (2022)
Due to the emergence of antimicrobial resistance and the lack of new antibacterial agents, it has become urgent to discover and develop new antibacterial agents against multidrug-resistant pathogens. Antimicrobial peptides (AMPs) serve as the first line of defense for the host. In this work, we have designed, synthesized, and biologically evaluated a series of phenyl sulfide derivatives by biomimicking the structural features and biological functions of AMPs. Among these derivatives, the most promising compound 17 exhibited potent antibacterial activity against Gram-positive bacteria (minimum inhibitory concentrations = 0.39-1.56 μg/mL), low hemolytic activity (HC 50 > 200 μg/mL), and high membrane selectivity. In addition, 17 can rapidly kill Gram-positive bacteria within 0.5 h through membrane-targeting action and avoid antibiotic resistance. More importantly, 17 showed high in vivo efficacy against Staphylococcus aureus in a murine corneal infection model. Therefore, 17 has great potential as a lead compound for the treatment of Gram-positive bacterial infections.
Keyphrases