On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations With a Pseudo-Online Brain-Controlled Speller.
Michele BevilacquaSerafeim PerdikisJosé Del R MillánPublished in: IEEE open journal of engineering in medicine and biology (2020)
Objective: Brain-computer interface (BCI) spelling is a promising communication solution for people in paralysis. Currently, BCIs suffer from imperfect decoding accuracy which calls for methods to handle spelling mistakes. Detecting error-related potentials (ErrPs) has been early identified as a potential remedy. Nevertheless, few works have studied the elicitation of ErrPs during engagement with other BCI tasks, especially when BCI feedback is provided continuously. Methods: Here, we test the possibility of correcting errors during pseudo-online Motor Imagery (MI) BCI spelling through ErrPs, and investigate whether BCI feedback hinders their generation. Ten subjects performed a series of MI spelling tasks with and without observing BCI feedback. Results: The average pseudo-online ErrP detection accuracy was found to be significantly above the chance level in both conditions and did not significantly differ between the two (74% with, and 78% without feedback). Conclusions: Our results support the possibility to detect ErrPs during MI-BCI spelling and suggest the absence of any BCI feedback-related interference.