Different Biophysical Properties of Cell Surface α2,3- and α2,6-Sialoglycans Revealed by Electron Paramagnetic Resonance Spectroscopic Studies.
Mohit JaiswalMingwei ZhouJiatong GuoTrang T TranSayan KunduAfnan M JauferGail E FanucciZhongwu GuoPublished in: The journal of physical chemistry. B (2023)
Sialoglycans on HeLa cells were labeled with a nitroxide spin radical through enzymatic glycoengineering (EGE)-mediated installation of azide-modified sialic acid (Neu5Ac9N 3 ) and then click reaction-based attachment of a nitroxide spin radical. α2,6-Sialyltransferase (ST) Pd2,6ST and α2,3-ST CSTII were used for EGE to install α2,6- and α2,3-linked Neu5Ac9N 3 , respectively. The spin-labeled cells were analyzed by X-band continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy to gain insights into the dynamics and organizations of cell surface α2,6- and α2,3-sialoglycans. Simulations of the EPR spectra revealed average fast- and intermediate-motion components for the spin radicals in both sialoglycans. However, α2,6- and α2,3-sialoglycans in HeLa cells possess different distributions of the two components, e.g., a higher average population of the intermediate-motion component for α2,6-sialoglycans (78%) than that for α2,3-sialoglycans (53%). Thus, the average mobility of spin radicals in α2,3-sialoglycans was higher than that in α2,6-sialoglycans. Given the fact that a spin-labeled sialic acid residue attached to the 6-O-position of galactose/ N -acetyl-galactosamine would experience less steric hindrance and show more flexibility than that attached to the 3-O-position, these results may reflect the differences in local crowding/packing that restrict the spin-label and sialic acid motion for α2,6-linked sialoglycans. The studies further suggest that Pd2,6ST and CSTII may have different preferences for glycan substrates in the complex environment of the extracellular matrix. The discoveries of this work are biologically important as they are useful for interpreting the different functions of α2,6- and α2,3-sialoglycans and indicate the possibility of using Pd2,6ST and CSTII to target different glycoconjugates on cells.
Keyphrases
- cell surface
- induced apoptosis
- cell cycle arrest
- density functional theory
- room temperature
- single molecule
- extracellular matrix
- cell death
- oxidative stress
- endoplasmic reticulum stress
- transition metal
- signaling pathway
- molecular dynamics
- pet imaging
- high resolution
- liver injury
- hydrogen peroxide
- solid state
- drug induced