Understanding the rapid spread of antimicrobial resistance genes mediated by IS 26 .
Na TangDawei WeiYuan ZengGang ZhangChao WangJie FengYuqin SongPublished in: mLife (2024)
Insertion sequences (ISs) promote the transmission of antimicrobial resistance genes (ARGs) across bacterial populations. However, their contributions and dynamics during the transmission of resistance remain unclear. In this study, we selected IS 26 as a representative transposable element to decipher the relationship between ISs and ARGs and to investigate their transfer features and transmission trends. We retrieved 2656 translocatable IS 26 -bounded units with ARGs (tIS 26 -bUs-ARGs) in complete bacterial genomes from the NCBI RefSeq database. In total, 124 ARGs spanning 12 classes of antibiotics were detected, and the average contribution rate of IS 26 to these genes was 41.2%. We found that IS 26 -bounded units (IS 26 -bUs) mediated extensive ARG dissemination within the bacteria of the Gammaproteobacteria class, showing strong transfer potential between strains, species, and even phyla. The IS 26 -bUs expanded in bacterial populations over time, and their temporal expansion trend was significantly correlated with antibiotic usage. This wide dissemination could be due to the nonspecific target site preference of IS 26 . Finally, we experimentally confirmed that the introduction of a single copy of IS 26 could lead to the formation of a composite transposon mediating the transmission of "passenger" genes. These observations extend our knowledge of the IS 26 and provide new insights into the mediating role of ISs in the dissemination of antibiotic resistance.