Login / Signup

Convenient Synthesis of 6,7,12,13-Tetrahydro-5H-Cyclohepta[2,1-b:3,4-b']diindole Derivatives Mediated by Hypervalent Iodine (III) Reagent.

Lei PengXiaofei ZhangChunhao Yang
Published in: Molecules (Basel, Switzerland) (2019)
Bisindolyl alkaloids represent a large family of natural and synthetic products that display various biological activities. Among the bisindole compounds, 6,7,12,13-tetrahydro-5H-cyclohepta[2,1-b:3,4-b']diindoles have received little attention. Only two methods have been developed for the construction of the 6,7,12,13-tetrahydro-5H-cyclohepta[2,1-b:3,4-b']diindole scaffold thus far, including the classical Fischer indole synthesis conducted by reacting indole-fused cycloheptanone and hydrazines, and the condensation reaction to build the seven-membered ring. Here, we report for the first time a new route to synthesize 6,7,12,13-tetrahydro-5H-cyclohepta[2,1-b:3,4-b']diindoles through intramolecular oxidative coupling of 1,3-di(1H-indol-3-yl)propanes in the presence of PIFA, DDQ and TMSCl with moderate to excellent yields.
Keyphrases
  • working memory
  • magnetic resonance imaging
  • high intensity
  • computed tomography
  • magnetic resonance
  • pseudomonas aeruginosa
  • escherichia coli
  • cystic fibrosis