Login / Signup

Abnormal Epigenetic Regulations in the Immunocytes of Sjögren's Syndrome Patients and Therapeutic Potentials.

Peng LiMengwei HanXingyu ZhaoGuanqun RenSi MeiChao Zhong
Published in: Cells (2022)
Sjögren's syndrome (SjS), characterized by keratoconjunctivitis sicca and dry mouth, is a common autoimmune disease, especially in middle-aged women. The immunopathogenesis of SjS is caused by the sequential infiltration of T and B cells into exocrine glands, including salivary and lacrimal glands. Effector cytokines produced by these immunocytes, such as interferons (IFNs), IL-17, IL-22, IL-21, IL-4, TNF-α, BAFF and APRIL, play critical roles in promoting autoimmune responses and inducing tissue damages. Epigenetic regulations, including DNA methylation, histone modification and non-coding RNAs, have recently been comprehensively studied during the activation of various immunocytes. The deficiency of key epigenetic enzymes usually leads to aberrant immune activation. Epigenetic modifications in T and B cells are usually found to be altered during the immunopathogenesis of SjS, and they are closely correlated with autoimmune responses. In particular, the important role of methylation in activating IFN pathways during SjS progression has been revealed. Thus, according to the involvement of epigenetic regulations in SjS, target therapies to reverse the altered epigenetic modifications in auto-responsive T and B cells are worthy of being considered as a potential therapeutic strategy for SjS.
Keyphrases