Login / Signup

Introgression of a Block of Genome Under Infinitesimal Selection.

Himani SachdevaNicholas H Barton
Published in: Genetics (2018)
Adaptive introgression is common in nature and can be driven by selection acting on multiple, linked genes. We explore the effects of polygenic selection on introgression under the infinitesimal model with linkage. This model assumes that the introgressing block has an effectively infinite number of loci, each with an infinitesimal effect on the trait under selection. The block is assumed to introgress under directional selection within a native population that is genetically homogeneous. We use individual-based simulations and a branching process framework to compute various statistics of the introgressing block, and explore how these depend on parameters such as the map length and initial trait value associated with the introgressing block, the genetic variability along the block, and the strength of selection. Our results show that the introgression dynamics of a block under infinitesimal selection are qualitatively different from the dynamics of neutral introgression. We also find that, in the long run, surviving descendant blocks are likely to have intermediate lengths, and clarify how their length is shaped by the interplay between linkage and infinitesimal selection. Our results suggest that it may be difficult to distinguish the long-term introgression of a block of genome with a single, strongly selected, locus from the introgression of a block with multiple, tightly linked and weakly selected loci.
Keyphrases
  • genome wide
  • copy number
  • hepatitis c virus
  • hiv testing
  • genome wide identification