Login / Signup

Formation of exoplanetary satellites by pull-down capture.

Bradley M S Hansen
Published in: Science advances (2019)
The large size and wide orbit of the recently announced exomoon candidate Kepler-1625b-i are hard to explain within traditional theories of satellite formation. We show that these properties can be reproduced if the satellite began as a circumstellar co-orbital body with the original core of the giant planet Kepler-1625b. This body was then drawn down into a circumplanetary orbit during the rapid accretion of the giant planet gaseous envelope, a process termed "pull-down capture." Our numerical integrations demonstrate the stability of the original configuration and the capture process. In this model, the exomoon Kepler-1625b-i is the protocore of a giant planet that never accreted a substantial gas envelope. Different initial conditions can give rise to capture into other co-orbital configurations, motivating the search for Trojan-like companions to this and other giant planets.
Keyphrases
  • rare case
  • room temperature
  • ionic liquid
  • sensitive detection