Two-Step Synthesis of B 2 N 2 -Doped Polycyclic Aromatic Hydrocarbon Containing Pentagonal and Heptagonal Rings with Long-Lived Delayed Fluorescence.
Huan LuoQingyun WanWookjin ChoiYusuke TsutsuiEvgenia DmitrievaLili DuDavid Lee PhillipsShu SekiJunzhi LiuPublished in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Pentagon-heptagon embedded polycyclic aromatic hydrocarbons (PAHs) have aroused increasing attention in recent years due to their unique physicochemical properties. Here, for the first time, this report demonstrates a facile method for the synthesis of a novel B 2 N 2 -doped PAH (BN-2) containing two pairs of pentagonal and heptagonal rings in only two steps. In the solid state of BN-2, two different conformations, including saddle-shaped and up-down geometries, are observed. Through a combined spectroscopic and calculation study, the excited-state dynamics of BN-2 is well-investigated in this current work. The resultant pentagon-heptagon embedded B 2 N 2 -doped BN-2 displays both prompt fluorescence and long-lived delayed fluorescence components at room temperature, with the triplet excited-state lifetime in the microsecond time region (τ = 19 µs). The triplet-triplet annihilation is assigned as the mechanism for the observed long-lived delayed fluorescence. Computational analyses attributed this observation to the small energy separation between the singlet and triplet excited states, facilitating the intersystem crossing (ISC) process which is further validated by the ultrafast spectroscopic measurements.