Login / Signup

Polarity Sensitivity in Pediatric and Adult Cochlear Implant Listeners.

Kelly N JahnJulie G Arenberg
Published in: Trends in hearing (2020)
Modeling data suggest that sensitivity to the polarity of an electrical stimulus may reflect the integrity of the peripheral processes of the spiral ganglion neurons. Specifically, better sensitivity to anodic (positive) current than to cathodic (negative) current could indicate peripheral process degeneration or demyelination. The goal of this study was to characterize polarity sensitivity in pediatric and adult cochlear implant listeners (41 ears). Relationships between polarity sensitivity at threshold and (a) polarity sensitivity at suprathreshold levels, (b) age-group, (c) preimplantation duration of deafness, and (d) phoneme perception were determined. Polarity sensitivity at threshold was defined as the difference in single-channel behavioral thresholds measured in response to each of two triphasic pulses, where the central high-amplitude phase was either cathodic or anodic. Lower thresholds in response to anodic than to cathodic pulses may suggest peripheral process degeneration. On the majority of electrodes tested, threshold and suprathreshold sensitivity was lower for anodic than for cathodic stimulation; however, dynamic range was often larger for cathodic than for anodic stimulation. Polarity sensitivity did not differ between child- and adult-implanted listeners. Adults with long preimplantation durations of deafness tended to have better sensitivity to anodic pulses on channels that were estimated to interface poorly with the auditory nerve; this was not observed in the child-implanted group. Across subjects, duration of deafness predicted phoneme perception performance. The results of this study suggest that subject- and electrode-dependent differences in polarity sensitivity may assist in developing customized cochlear implant programming interventions for child- and adult-implanted listeners.
Keyphrases
  • mental health
  • spinal cord
  • spinal cord injury
  • young adults
  • neuropathic pain
  • optical coherence tomography
  • hearing loss