Login / Signup

Self-similar properties of avalanche statistics in a simple turbulent model.

Roberto BenziIlaria CastaldiFederico ToschiJeannot Trampert
Published in: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences (2022)
In this paper, we consider a simplified model of turbulence for large Reynolds numbers driven by a constant power energy input on large scales. In the statistical stationary regime, the behaviour of the kinetic energy is characterized by two well-defined phases: a laminar phase where the kinetic energy grows linearly for a (random) time [Formula: see text] followed by abrupt avalanche-like energy drops of sizes [Formula: see text] due to strong intermittent fluctuations of energy dissipation. We study the probability distribution [Formula: see text] and [Formula: see text] which both exhibit a quite well-defined scaling behaviour. Although [Formula: see text] and [Formula: see text] are not statistically correlated, we suggest and numerically checked that their scaling properties are related based on a simple, but non-trivial, scaling argument. We propose that the same approach can be used for other systems showing avalanche-like behaviour such as amorphous solids and seismic events. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.
Keyphrases
  • smoking cessation
  • human milk
  • low birth weight
  • high intensity