Login / Signup

Review of Magnesium Wheel Types and Methods of Their Manufacture.

Anna DziubinskaEwa SiemionekPiotr SurdackiMonika KuliszBartosz Koczurkiewicz
Published in: Materials (Basel, Switzerland) (2024)
This article provides a detailed review of the types of magnesium wheels available in the industry and the current methods of the wheels' production. The past several years have seen a significant development of magnesium-based lightweight alloys employed as a structural material for modern light vehicles. Magnesium alloys are characterized by their low density while maintaining good mechanical properties. The use of these alloys in the industry enables vehicles' weight reduction while increasing their technical parameters. The first part of the article presents the unique properties of magnesium alloys that determine the application of this material for lightweight vehicle wheels. The advantages of using magnesium wheels over aluminum wheels are also presented. Next, a classification of the types of magnesium wheels was made in regard to their construction, applications, and manufacturing methods. At present, magnesium wheels by construction can be classified according to their geometry as single parts or assembled parts. In reference to geometry, wheels can have different shapes: classic, multi-spoke, with holes, or with frames. Depending on the geometry used, magnesium wheels can have different parameters, such as their mounting hole spacing, wheel diameters, or rim width. Considering the applications in various industries, main distinctions can be made between magnesium wheels for automobiles, motorcycles, bicycles, and wheelchairs. Magnesium wheels can also be categorized in regards to the manufacturing methods: casting, machining, forging, and hybrid manufacturing. The second part of the article focuses on the analysis of magnesium alloy wheel-manufacturing technologies used in the industry and developed by research centers. This article discusses these manufacturing technologies in detail and indicates prospective directions for further development.
Keyphrases
  • machine learning