Login / Signup

The effects of protein charge patterning on complex coacervation.

Nicholas A ZervoudisAllie C Obermeyer
Published in: Soft matter (2021)
The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein's binodal phase boundary. Protein concentrations over 100 mg mL-1 were achieved in the coacervate phase, with concentrations dependent on the tag polypeptide sequence covalently attached to the globular protein domain. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids in the tag polypeptide sequence alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.
Keyphrases
  • amino acid
  • binding protein
  • gene expression
  • dna methylation