Liquid Metal-Based Soft Microfluidics.
Lifei ZhuBen WangStephan Handschuh-WangXuechang ZhouPublished in: Small (Weinheim an der Bergstrasse, Germany) (2019)
Motivated by the increasing demand of wearable and soft electronics, liquid metal (LM)-based microfluidics has been subjected to tremendous development in the past decade, especially in electronics, robotics, and related fields, due to the unique advantages of LMs that combines the conductivity and deformability all-in-one. LMs can be integrated as the core component into microfluidic systems in the form of either droplets/marbles or composites embedded by polymer materials with isotropic and anisotropic distribution. The LM microfluidic systems are found to have broad applications in deformable antennas, soft diodes, biomedical sensing chips, transient circuits, mechanically adaptive materials, etc. Herein, the recent progress in the development of LM-based microfluidics and their potential applications are summarized. The current challenges toward industrial applications and future research orientation of this field are also summarized and discussed.