Preparation and Evaluation of Directly Compressible Orally Disintegrating Tablets of Cannabidiol Formulated Using Liquisolid Technique.
Ekapol LimpongsaPeera TabboonThaned PongjanyakulNapaphak JaipakdeePublished in: Pharmaceutics (2022)
This study demonstrated the implementation of a liquisolid technique to formulate directly compressible orally disintegrating tablets (ODTs). Cannabidiol (CBD), a hydrophobic cannabinoid, was prepared as a liquisolid powder using microcrystalline cellulose-colloidal silicon dioxide as a carrier-coating material. Different liquid vehicles differing in their volatility, hydrophilicity, and viscosity were investigated. Each of the CBD-ODTs comprised CBD liquisolid powder (10 mg CBD), superdisintegrant, flavors, lubricant, and filler. The physical mixture (PM) ODT was prepared as a control. Ethanol-based ODTs (CBD-EtOH-ODTs) had comparable tablet properties and stability to CBD-PM-ODTs. ODTs with nonvolatile-vehicle-based liquisolid powder had lower friability but longer disintegration times as compared with CBD-PM-ODTs and CBD-EtOH-ODTs. Compression pressure influenced the thickness, hardness, friability, and disintegration of the ODTs. With a suitable compression pressure to yield 31-N-hardness-ODTs and superdisintegrant (4-8%), CBD-ODTs passed the friability test and promptly disintegrated (≤25 s). Times to dissolve 50% of CBD-PM-ODTs, CBD-EtOH-ODTs, and nonvolatile-vehicle-based CBD-ODTs were 10.1 ± 0.7, 3.8 ± 0.2, and 4.2 ± 0.4-5.0 ± 0.1 min, respectively. CBD-EtOH-ODTs exhibited the highest dissolution efficiency of 93.5 ± 2.6%. Long-term and accelerated storage indicated excellent stability in terms of tablet properties and dissolution. Nonvolatile-vehicle-based CBD-ODTs exhibited a higher percentage of remaining CBD. This study provides useful basic information for the development of ODT formulations using a liquisolid technique application.