Login / Signup

A Curcumin Degradation Product, 7-Norcyclopentadione, Formed by Aryl Migration and Loss of a Carbon from the Heptadienedione Chain.

Akil I JosephPaula B LuisClaus Schneider
Published in: Journal of natural products (2018)
Evidence that anti-inflammatory and other biological effects of curcumin may at least in part be mediated by its metabolites underscores the importance of identifying novel transformation products. Spontaneous degradation of curcumin in buffer pH 7.5 results mainly in dioxygenated products with a characteristic cyclopentadione ring composed of carbons 2 through 6 of the former heptadienedione chain. When analyzing degradation reactions of 4'- O-methylcurcumin, a product was identified missing one of the terminal carbons of the heptadienedione moiety while containing a cyclopentadione ring and adjacent hydroxy group typical of curcumin degradation products. Analysis of curcumin autoxidation reactions showed formation of an analogous compound, 7-norcyclopentadione, a degradation product exhibiting net loss of a carbon and gain of an oxygen atom. Removal of the carbon is proposed to occur via a peroxide-linked curcumin dimer in conjunction with radical-mediated 1,2-aryl migration of a guaiacol moiety. Oxidation reactions of demethoxycurcumin gave demethoxy-7-norcyclopentadione, whereas an analogous product was not observed from bis-demethoxycurcumin. Incubation of RAW264.7 macrophage-like cells with curcumin showed the presence of 7-norcyclopentadione, the formation of which was not increased upon activation of the cells with 12- O-tetradecanoylphorbol-13-acetate . 7-Norcyclopentadione is a novel type of degradation product that is most likely formed via autoxidative processes when cells are incubated with curcumin.
Keyphrases
  • induced apoptosis
  • anti inflammatory
  • cell cycle arrest
  • oxidative stress
  • endoplasmic reticulum stress
  • signaling pathway
  • ionic liquid