Login / Signup

The effect of gallic acid on malondialdehyde, hydrogen peroxide and nitric oxide that influence viability of broiler blood cells at the high ambient temperatures.

Piyarat SrinonthongJaroon WandeeWorapol Aengwanich
Published in: British poultry science (2023)
1. The objective of this study was to measure the effect of gallic acid on levels of ferric reducing antioxidant power, malondialdehyde, hydrogen peroxide, nitric oxide and the viability of broiler blood cells (BBCs) when exposed to high ambient temperature.2. The BBCs were maintained at 41.5°C (control group, CG) or at ambient temperatures ranging from 41.5°C to 46°C. At 41.5°C to 46°C, BBCs were diluted with gallic acid at 0 (positive control group, PCG), 6.25, 12.5, 25 and 50 µmol, respectively. Ferric reducing antioxidant power, malondialdehyde, hydrogen peroxide, nitric oxide and viability of BBCs were investigated.3. Hydrogen peroxide, malondialdehyde and nitric oxide for the CG was lower than PCG (P<0.05). However, the viability of CG was higher than PCG (P<0.05). At 41.5 to 46°C, malondialdehyde, hydrogen peroxide, and nitric oxide of BBCs diluted with gallic acid were lower compared to PCG (P<0.05). Viability of BBCs diluted with gallic acid was higher than PCG (P<0.05).4. These results indicated that gallic acid could reduce the adverse oxidative effects of high ambient temperature on BBCs, with an optimum dilution rate of 12.5 µmol.
Keyphrases
  • hydrogen peroxide
  • nitric oxide
  • air pollution
  • nitric oxide synthase
  • particulate matter
  • oxidative stress
  • heat stress
  • emergency department
  • high resolution
  • gas chromatography