Genetic variations of DNA bindings of FOXA1 and co-factors in breast cancer susceptibility.
Wanqing WenZhishan ChenJian-Dong BaoQuan LongXiao-Ou ShuQuan LongXingyi GuoPublished in: Nature communications (2021)
Identifying transcription factors (TFs) whose DNA bindings are altered by genetic variants that regulate susceptibility genes is imperative to understand transcriptional dysregulation in disease etiology. Here, we develop a statistical framework to analyze extensive ChIP-seq and GWAS data and identify 22 breast cancer risk-associated TFs. We find that, by analyzing genetic variations of TF-DNA bindings, the interaction of FOXA1 with co-factors such as ESR1 and E2F1, and the interaction of TFs with chromatin features (i.e., enhancers) play a key role in breast cancer susceptibility. Using genetic variants occupied by the 22 TFs, transcriptome-wide association analyses identify 52 previously unreported breast cancer susceptibility genes, including seven with evidence of essentiality from functional screens in breast relevant cell lines. We show that FOXA1 and co-factors form a core TF-transcriptional network regulating the susceptibility genes. Our findings provide additional insights into genetic variations of TF-DNA bindings (particularly for FOXA1) underlying breast cancer susceptibility.