Login / Signup

Isolation of a Homoleptic Non-oxo Mo(V) Alkoxide Complex: Synthesis, Structure, and Electronic Properties of Penta-tert-Butoxymolybdenum.

Julius HillenbrandMaurice van GastelEckhard BillFrank NeeseAlois Fürstner
Published in: Journal of the American Chemical Society (2020)
Treatment of [MoCl4(THF)2] with MOtBu (M = Na, Li) does not result in simple metathetic ligand exchange but entails disproportionation with formation of the well-known dinuclear complex [(tBuO)3Mo≡Mo(OtBu)3] and a new paramagnetic compound, [Mo(OtBu)5]. This particular five-coordinate species is the first monomeric, homoleptic, all-oxygen-ligated but non-oxo 4d1 Mo(V) complex known to date; as such, it proves that the dominance of the Mo═O group over (high-valent) molybdenum chemistry can be challenged. [Mo(OtBu)5] was characterized in detail by a combined experimental/computational approach using X-ray diffraction; UV/vis, MCD, IR, EPR, and NMR spectroscopy; and quantum chemistry. The recorded data confirm a Jahn-Teller distortion of the structure, as befitting a d1 species, and show that the complex undergoes Berry pseudorotation. The alkoxide ligands render the disproportionation reaction, leading the formation of [Mo(OtBu)5] to be particularly facile, even though the parent complex [MoCl4(THF)2] itself was also found to be intrinsically unstable; remarkably, this substrate converts into a crystalline material, in which the newly formed Mo(III) and Mo(V) products cohabitate the same unit cell.
Keyphrases