Login / Signup

Fitting and validation of an agent-based model for COVID-19 case forecasting in workplaces and universities.

Vignesh KumaresanNiranjan BalachandarSarah F PooleLance J MyersPaul VargheseVindell WashingtonYugang JiaVivian S Lee
Published in: PloS one (2023)
COVID-19 forecasting models have been critical in guiding decision-making on surveillance testing, social distancing, and vaccination requirements. Beyond influencing public health policies, an accurate COVID-19 forecasting model can impact community spread by enabling employers and university leaders to adapt worksite policies and practices to contain or mitigate outbreaks. While many such models have been developed for COVID-19 forecasting at the national, state, county, or city level, only a few models have been developed for workplaces and universities. Furthermore, COVID-19 forecasting models have rarely been validated against real COVID-19 case data. Here we present the systematic parameter fitting and validation of an agent-based compartment model for the forecasting of daily COVID-19 cases in single-site workplaces and universities with real-world data. Our approaches include manual fitting, where initial model parameters are chosen based on historical data, and automated fitting, where parameters are chosen based on candidate case trajectory simulations that result in best fit to prevalence estimation data. We use a 14-day fitting window and validate our approaches on 7- and 14-day testing windows with real COVID-19 case data from one employer. Our manual and automated fitting approaches accurately predicted COVID-19 case trends and outperformed the baseline model (no parameter fitting) across multiple scenarios, including a rising case trajectory (RMSLE values: 2.627 for baseline, 0.562 for manual fitting, 0.399 for automated fitting) and a decreasing case trajectory (RMSLE values: 1.155 for baseline, 0.537 for manual fitting, 0.778 for automated fitting). Our COVID-19 case forecasting model allows decision-makers at workplaces and universities to proactively respond to case trend forecasts, mitigate outbreaks, and promote safety.
Keyphrases