Login / Signup

A Five-Year Study on Infestation and Abundance of Bat Flies (Hippoboscoidea: Streblidae) Under Severe Dry Season Conditions in the Tropical Dry Forest of Yucatan, Mexico.

Ana Celia Montes de Oca-AguilarMartha Pilar Ibarra-LópezCarlos N Ibarra-Cerdeña
Published in: Neotropical entomology (2024)
In Mexico, few studies have explored how environmental conditions in tropical dry forests (TDF) influence bat fly load even though, according to climate change scenarios, this ecosystem will experience a drier and warmer climate. Such an extension of the dry season in these ecosystems could have dramatic consequences for biodiversity, particularly in regions with plains where animals do not have elevational climate shifts. The present study therefore evaluates the effect of prevailing environmental conditions during 2015-2019, as well as host body conditions, on the infestation and abundance of bat-specific ectoparasites and the composition and bat fly load in the dry season of a TDF in Yucatan. Since Yucatan has an essentially flat and low-lying topography, organisms cannot escape from the predicted extreme conditions with elevational shifts. This region is therefore an excellent location for assessment of the potential effects of warming. We collected 270 bat flies from 12 species. Three streblid species (Nycterophilia parnelli Wenzel, Trichobius johnsonae Wenzel, and Trichobius sparsus Kessel) are new records for Yucatan. Our overview of the dry season bat ectoparasite loads reveals low values of richness and prevalence, but high aggregation. Our models detected significant differences in ectoparasite infestation and abundance over the years, but the environmental and body host condition variables were unrelated to these. We report that pregnant females are parasitized to a greater extent by bat flies during the dry season, which generally represents the season of most significant nutritional stress.
Keyphrases
  • climate change
  • human health
  • drosophila melanogaster
  • pregnant women
  • risk assessment
  • risk factors
  • cord blood
  • life cycle
  • gram negative