Structural variation in Drosophila melanogaster spermathecal ducts and its association with sperm competition dynamics.
Ben R HopkinsIrem SepilStuart WigbyPublished in: Royal Society open science (2020)
The ability of female insects to retain and use sperm for days, months, or even years after mating requires specialized storage organs in the reproductive tract. In most orders, these organs include a pair of sclerotized capsules known as spermathecae. Here, we report that some Drosophila melanogaster females exhibit previously uncharacterized structures within the distal portion of the muscular duct that links a spermatheca to the uterus. We find that these 'spermathecal duct presences' (SDPs) may form in either or both ducts and can extend from the duct into the sperm-storing capsule itself. We further find that the incidence of SDPs varies significantly between genotypes, but does not change significantly with the age or mating status of females, the latter indicating that SDPs are not composed of or stimulated by sperm or male seminal proteins. We show that SDPs affect neither the number of first male sperm held in a spermatheca nor the number of offspring produced after a single mating. However, we find evidence that SDPs are associated with a lack of second male sperm in the spermathecae after females remate. This raises the possibility that SDPs provide a mechanism for variation in sperm competition outcome among females.