Login / Signup

Solution-Plasma-Assisted Bimetallic Oxide Alloy Nanoparticles of Pt and Pd Embedded within Two-Dimensional Ti3C2T x Nanosheets as Highly Active Electrocatalysts for Overall Water Splitting.

Bingbing CuiBin HuJiameng LiuMinghua WangYingpan SongKuan TianZhi-Hong ZhangLinghao He
Published in: ACS applied materials & interfaces (2018)
Exploiting high-efficiency and low-cost bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has been actively encouraged because of their potential applications in the field of clean energy. In this paper, we reported a novel electrocatalyst based on an exfoliated two-dimensional (2D) MXene (Ti3C2T x) loaded with bimetallic oxide alloy nanoparticles (NPs) of Pt and Pd (represented by PtO aPdO bNPs@Ti3C2T x), which was synthesized via solution plasma (SP) modification. The prepared materials were then utilized as highly efficient bifunctional electrocatalysts toward the HER and OER in alkaline solution. At a high plasma input power (200 W), bimetallic oxide alloy nanoparticles of Pt and Pd or nanoclusters with different metallic valence states were deposited onto the Ti3C2T x nanosheets. Because of the synergism of the noble-metal NPs and the Ti3C2T x nanosheets, the electrocatalytic results revealed that the as-prepared PtO aPdO bNPs@Ti3C2T x nanosheets under the plasma input power of 200 W for 3 min only required a low overpotential to attain 10 mA cm-2 for the HER (-26.5 mV) in 0.5 M H2SO4 solution and OER (1.54 V) in 0.1 M KOH solution. Moreover, water electrolysis using this catalyst achieved a water splitting current density of 10 mA cm-2 at a low cell voltage of 1.53 V in 1.0 M KOH solution. These results suggested that the hybridization of the extremely low usage of PtO a/PdO b NPs (1.07 μg cm-2) and Ti3C2T x nanosheets by SP will expand the applications of other clean energy reactions to achieve sustainable energy.
Keyphrases