Preliminary Observations of Resting-State Magnetoencephalography in Nonmedicated Children with Obsessive-Compulsive Disorder.
Vinh TanColleen DockstaderIska Moxon-EmreSandra MendlowitzReva SchacterMarlena ColasantoAristotle N VoineskosAquila AkingbadeEman NishatDonald J MabbottPaul D ArnoldStephanie H AmeisPublished in: Journal of child and adolescent psychopharmacology (2022)
Background: Cortico-striato-thalamo-cortical (CSTC) network alterations are hypothesized to contribute to symptoms of obsessive-compulsive disorder (OCD). To date, very few studies have examined whether CSTC network alterations are present in children with OCD, who are medication naive. Medication-naive pediatric imaging samples may be optimal to study neural correlates of illness and identify brain-based markers, given the proximity to illness onset. Methods: Magnetoencephalography (MEG) data were analyzed at rest, in 18 medication-naive children with OCD ( M = 12.1 years ±2.0 standard deviation [SD]; 10 M/8 F) and 13 typically developing children ( M = 12.3 years ±2.2 SD; 6 M/7 F). Whole-brain MEG-derived resting-state functional connectivity (rs-fc), for alpha- and gamma-band frequencies were compared between OCD and typically developing (control) groups. Results: Increased MEG-derived rs-fc across alpha- and gamma-band frequencies was found in the OCD group compared to the control group. Increased MEG-derived rs-fc at alpha-band frequencies was evident across a number of regions within the CSTC circuitry and beyond, including the cerebellum and limbic regions. Increased MEG-derived rs-fc at gamma-band frequencies was restricted to the frontal and temporal cortices. Conclusions: This MEG study provides preliminary evidence of altered alpha and gamma networks, at rest, in medication-naive children with OCD. These results support prior findings pointing to the relevance of CSTC circuitry in pediatric OCD and further support accumulating evidence of altered connectivity between regions that extend beyond this network, including the cerebellum and limbic regions. Given the substantial portion of children and youth whose OCD symptoms do not respond to conventional treatments, our findings have implications for future treatment innovation research aiming to target and track whether brain patterns associated with having OCD may change with treatment and/or predict treatment response.